Improved Joint Probabilistic Data Association Method based on Interacting Multiple Model

نویسنده

  • Xinlei Li
چکیده

Multitarget tracking with highly maneuver and crossing track under dense-clutter environment is an emphasis in target tracking field. To effectively differentiate the measurement of cluster and target, and establish the relation between target and measurement, the data relation technologies are needed to keep the consistency of path tracking. When maneuvers happen to the target, a suitable motion model should be selected for self-adaptive tracking. With consideration of these two points, we combine JPDA algorithm with IMM algorithm according to some certain way, to track multiple maneuvering targets in clutter environment. Then an improved method named OEA-JPDA (Once Echo Association) is proposed. OEA-JPDA selects the model corresponding to the biggest determinant of the covariance matrix as the target moving model of current time. Simultaneously, a related cluster matrix is created. When the amount of echoes and models is large, all the filters are performed echo associated once with added prediction consolidation and probability update. The simulation results show that this method has higher tracking accuracy for multiple maneuvering targets which are changed with time, under the dense-clutter scenario. Even if strong maneuver occurs, there is no need for bigger adjustment to the mean square error for target destinations. The improved scheme can achieve effective tracking in cluster environment with lower computation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining of IMM filtering and DS data association for multitarget tracking

The tracking of targets in road situation represents a challenge for both the measurement to track association and the positional estimation algorithms. Previous simulation have shown that the data association method based on evidence theory has a good performance, compared with the Nearest Neighbor (NN) and cheap JPDAF method, moreover it has proved that the Interacting Multiple Models (IMM) m...

متن کامل

Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model

Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...

متن کامل

Improved NN-JPDAF for Joint Multiple Target Tracking and Feature Extraction

Feature aided tracking can often yield improved tracking performance over the standard multiple target tracking (MTT) algorithms with only kinematic measurements. However, in many applications, the feature signal of the targets consists of sparse Fourier-domain signals. It changes quickly and nonlinearly in the time domain, and the feature measurements are corrupted by missed detections and mis...

متن کامل

Detection and Tracking Algorithms for IRST

Infrared search and track system is an integral part of modern weaponry. The detection and tracking algorithm forms the heart of an IRST system and their effectiveness plays an important role in determining performance of the system. This report studies various detection and tracking algorithms for multiple point targets in noisy environment resulting in very low signal to noise ratio. Target d...

متن کامل

Parallel particle filters for multiple target tracking

The Multiple Targets Tracking (MTT) problem is addressed in signal and image processing. When the state and measurement models are linear, we can find several algorithms that yield good performances in MTT problem, among them, the Multiple Hypotheses Tracker (MHT) and the Joint Probabilistic Data Association Filter (JPDAF). However, if the state and measurement models are nonlinear, these algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JNW

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014